Validation of a computational docking methodology to identify the non-covalent binding site of ligands to DNA.
نویسندگان
چکیده
Despite the biomedical consequences of carcinogen-DNA interactions and the potential of DNA as a drug target in medicinal chemistry, only a small number of studies have validated or used docking methods for the prediction of the physical binding of small molecules to DNA. Knowledge of the DNA-physically-bound ligand geometry can lead to the elucidation of the molecular-level mechanism of drugs as well as predicting the subsequent chemical interactions that lead to DNA damage from carcinogens. We sought to validate AutoDock 4.2, a docking method that includes a physics-based free energy function and a Lamarckian Genetic Algorithm, for the prediction of ligand geometries upon physical binding to DNA. We performed simulations by systematically changing the length of the search process for a comprehensive set of 32 ligand-DNA molecular systems with different physico-chemical properties, and we used a free-energy-based convergence criterion to terminate our simulations. For 11 out of 28 molecular systems for which convergence was achieved, the lowest binding free energy geometries were within 2 Å of the experimentally determined geometry. Considering all predicted sites with free energy changes within 20% of the lowest binding free energy site, we found a site within 2 Å of the experimentally determined geometry for 24 out of the 28 systems. However, the predicted hydrogen bonding interactions were different for most molecular systems compared to the same interactions in the experimentally determined geometry. We discuss reasons for the successes and failures, implications, and the importance of ensuring an adequate search in docking calculations. Overall, we concluded that AutoDock 4.2 can be used to predict the non-covalent binding geometry of a small molecule to DNA with some limitations.
منابع مشابه
Ligand-based pharmacophore modeling to identify plant-derived acetylcholinesterase inhibitor natural compounds in Alzheimer’s disease
Background: Alzheimer’s disease (AD) is a neurodegenerative disease characterized by decreased cognitive function in patients due to forming Aβ peptides and neurofibrillary tangles (NFT) in the brain. Therefore, the need to develop new treatments can reduce this risk. Acetylcholinesterase is one of the targets used in the design of new drugs for the treatment of AD. The researchers obtain new i...
متن کاملPutative Binding Sites of Dopamine and Arachidonoyl Dopamine to Beta-lactoglobulin: A Molecular Docking and Molecular Dynamics Study
Because of participation in many aspects of human life, and due to oxidation-sensitive characteristics of dopamine (DA) and arachidonoyl dopamine (AA-DA), the necessity of biocompatible carrier to keep them against oxidation is of importance. In this work, we explored the putative binding sites of DA and AA-DA to -lactoglobulin (BLG) as potent carrier. Docking results identified the binding si...
متن کاملSynthesis, Molecular Docking and Cytotoxic Activity Evaluation of Organometallic Thiolated Gold(I) Complexes
The complex [(PhCH2NC)AuCl], 1, was prepared by the reaction of [(Me2S)AuCl], A, with an equimolar amount of benzyl isocyanide (PhCH2NC) ligand. Through a salt metathesis reaction, the chloride ligand in 1 was replaced by potassium benzothiazole-2-thiolate (Kbt) and potassium benzoimidazole-2-thiolate (Kbi) to a...
متن کاملSynthesis, Molecular Docking and Cytotoxic Activity Evaluation of Organometallic Thiolated Gold(I) Complexes
The complex [(PhCH2NC)AuCl], 1, was prepared by the reaction of [(Me2S)AuCl], A, with an equimolar amount of benzyl isocyanide (PhCH2NC) ligand. Through a salt metathesis reaction, the chloride ligand in 1 was replaced by potassium benzothiazole-2-thiolate (Kbt) and potassium benzoimidazole-2-thiolate (Kbi) to a...
متن کاملNovel Small Molecules against Two Binding Sites of Wnt2 Protein as potential Drug Candidates for Colorectal Cancer: A Structure Based Virtual Screening Approach
Wnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (CRC). Therefore, it can be considered as a potential drug target.The aim of this study was to identify potential drug candidates ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular bioSystems
دوره 10 8 شماره
صفحات -
تاریخ انتشار 2014